Sum Divisor Cordial Labeling in the Context of Duplication of Graph Elements

D. G. Adalja ¹, G. V. Ghodasara ²

¹ Marwadi Education Foundation,
Rajkot, Gujarat - INDIA
divya.adalja@marwadeducation.edu.in

² H. & H. B. Kotak Institute of Science,
Rajkot, Gujarat - INDIA
gaurang.enjoy@gmail.com

Abstract

A sum divisor cordial labeling of a graph G with vertex set \(V(G)\) is a bijection \(f: V(G) \rightarrow \{1, 2, 3, \ldots, |V(G)|\}\) such that an edge \(e = uv\) is assigned the label 1 if \(2|f(u) + f(v)|\) and 0 otherwise, then the number of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1. If a graph admits a sum divisor cordial labeling, then it is called sum divisor cordial graph. In this paper we have derived some result on sum divisor cordial labeling for the graphs resulted from the duplication of graph elements.

Keywords: Sum divisor cordial labeling, Duplication of graph elements.

AMS Subject Classification(2010): 05C78.

1 Introduction

Throughout this work, by a graph we mean a simple, finite, undirected graph \(G = (V, E)\) of order \(p\) and size \(q\). For terms and notations related to graph theory which are not defined here, we refer to Gross and Yellen[5] and for standard terminology and notations related to number theory we refer to Burton[2]. This paper includes the results on sum divisor cordial labeling, which is a particular type of graph labeling. The concept of graph labeling was introduced by Rosa.
1.1 Definitions

Definition 1.1 ([8]). *If the vertices or edges or both of the graph are assigned valued subject to certain conditions it is known as graph labeling.*

For a dynamic survey on various graph labeling problems along with an extensive bibliog-raphy we refer to Gallian[4].

Cordial labeling was introduced by Cahit as a weaker version of graceful and harmonious labeling of graphs. Combining the concept of divisibility from number theory and cordial labeling from graph labeling, Varatharajan et al.[9] introduced the concept of divisor cordial labeling of a graph.

Definition 1.2 ([9]). A bijection \(f : V(G) \to \{1, 2, \ldots, p\} \) is said to be divisor cordial labeling of a graph \(G \) if the induced function \(f^* : E(G) \to \{0, 1\} \) defined by

\[
f^*(e = uv) = \begin{cases}
1; & \text{if } f(u) | f(v) \text{ or } f(v) | f(u) \\
0; & \text{otherwise}
\end{cases}
\]

satisfies the condition \(|e_f(0) - e_f(1)| \leq 1 \).

A graph with a divisor cordial labeling is called a divisor cordial graph.

Varatharajan et al.[9] proved that the graphs such as path, cycle, wheel, star, some complete bipartite graphs, some special classes of graphs such as full binary tree, dragon, corona, \(G \ast K_{2,n} \) and \(G \ast K_{3,n} \) are divisor cordial. Ghodasara and Adalja[3] derived divisor cordial labeling for ringsum of some standard graphs with star graph.

Definition 1.3 ([6]). Let \(f : V(G) \to \{1, 2, 3, \ldots, |V(G)|\} \) be a bijection and let the induced function \(f^* : E(G) \to \{0, 1\} \) be defined as

\[
f^*(e = uv) = \begin{cases}
1; & \text{if } 2 | [f(u) + f(v)] \\
0; & \text{otherwise}.
\end{cases}
\]

Then \(f \) is called sum divisor cordial labeling of graph \(G \) if \(|e_f(0) - e_f(1)| \leq 1 \).

A graph with a sum divisor cordial labeling is called sum divisor cordial graph.

Lourdusamy et al.[6] introduced the concept of sum divisor cordial labeling of graphs. In [7] the same authors have proved that shadow graph and splitting graph of \(K_{1,n} \), shadow graph, subdivision graph, splitting graph and degree splitting graph of \(B_{n,n} \), corona of ladder and triangular ladder with \(K_1 \), closed helm are sum divisor cordial graphs. In[1] Adalja and Ghodasara derived sum divisor cordial labeling of cycle, cycle with one chord, cycle with twin chords, cycle with triangle, wheel, helm, web, shell, flower and double fan.
2 Sum divisor cordial labeling for duplication of star $K_{1,n}$ related graphs

Definition 2.1 ([4]). Duplication of a vertex v_k of a graph G produces a new graph G' by adding a vertex v'_k with $N(v_k) = N(v'_k)$.

Theorem 2.1. The graph obtained by duplication of any vertex in $K_{1,n}$ is a sum divisor cordial graph.

Proof. Let v_0 be the apex vertex and v_1, v_2, \ldots, v_n are pendant vertices of $K_{1,n}$. Let G denote the graph obtained by duplication of any vertex v_j by a vertex v'_j in $K_{1,n}$. Depending upon the $deg(v_j)$ in $K_{1,n}$ we have the following two cases.

Case 1: Duplication of apex vertex.

The graph obtain by duplication of apex vertex v_0 in $K_{1,n}$, which is the complete bipartite graph $K_{2,n}$. Hence it is sum divisor cordial graph as proved in [9]

Case 2: Duplication of pendant vertex.

The graph obtained by duplication of any pendant vertex in $K_{1,n}$, which is again a star graph $K_{1,n+1}$. Hence it is sum divisor cordial graph as proved in [9].

Definition 2.2 ([4]). Duplication of an edge $e = uv$ of graph G produces a new graph G' by adding an edge $e' = u'v'$ such that $N(u') = N(u) \cup \{v\} \setminus \{v\}$ and $N(v') = N(v) \cup \{u\} \setminus \{u\}$.

Theorem 2.2. The graph obtained by duplication of an edge in $K_{1,n}$ is sum divisor cordial.

Proof. Let v_0 be the apex vertex and v_1, v_2, \ldots, v_n be consecutive pendant vertices of $K_{1,n}$. Let G denote the graph obtained by duplication of the edge $e = v_0v_n$ by a new edge $e' = v'_0v'_n$ in $K_{1,n}$. Hence in G, $deg(v_0) = n, deg(v'_0) = n, deg(v_n) = 1, deg(v'_n) = 1$ and $deg(v_i) = 2, \forall i \in \{1, 2, \ldots, n-1\}$.

Now the resultant graph G will have $n + 3$ vertices and $2n$ edges. We define vertex labeling $f : V(G) \rightarrow \{1, 2, \ldots n + 3\}$ as follows.

\[
\begin{align*}
f(v_0) &= 1. \\
f(v_1) &= 4. \\
f(v_n) &= 3. \\
f(v'_0) &= 2. \\
f(v'_n) &= 5. \\
f(v_i) &= 4 + i; \quad 2 \leq i \leq n - 1.
\end{align*}
\]
In view of the above defined labeling pattern, we have $e_f(1) = n = e_f(0)$. Thus $|e_f(0) - e_f(1)| \leq 1$. Hence, the graph obtained by duplication of an edge in $K_{1,n}$ is sum divisor cordial.

Example 2.1. The star graph $K_{1,8}$ and sum divisor cordial labeling of the graph obtained by duplication of an edge in $K_{1,8}$ are shown in Figure 1.

![Figure 1](image_url)

Definition 2.3 ([4]). Duplication of a vertex v_k by a new edge $e' = v'u'$ in a graph G produces a new graph G' such that $N(v') = \{v_k, u'\}$ and $N(u') = \{v_k, v'\}$.

Theorem 2.3. The graph obtained by duplication of a vertex by an edge in $K_{1,n}$ is a sum divisor cordial graph.

Proof. Let v_0 be the apex vertex of star graph $K_{1,n}$ and v_1, v_2, \ldots, v_n are pendant vertices of $K_{1,n}$. Let G denote the graph obtained by duplication of a vertex v_j by an edge $v'_j v''_j$ in $K_{1,n}$.

We consider the following cases.

Case 1: Duplication of apex vertex v_0 by an edge $v'_0 v''_0$.

Now the resultant graph G will have $n + 3$ vertices and $n + 3$ edges.

We define $f : V(G) \to \{1, 2, 3, \ldots, n + 2, n + 3\}$ as follows.

\[
\begin{align*}
 f(v_0) &= 1, \\
 f(v_1) &= 3, \\
 f(v'_0) &= 4, \\
 f(v''_0) &= 2, \\
 f(v_i) &= 3 + i; \quad 2 \leq i \leq n.
\end{align*}
\]
The following table describes the results of edge labels obtained due to the above labeling pattern.

<table>
<thead>
<tr>
<th>Cases of n</th>
<th>Results for edge labels</th>
</tr>
</thead>
<tbody>
<tr>
<td>n is even</td>
<td>$e_f(0) = \frac{n+2}{2}, e_f(1) = \frac{n+4}{2}$</td>
</tr>
<tr>
<td>n is odd</td>
<td>$e_f(1) = \frac{n+3}{2} = e_f(0)$</td>
</tr>
</tbody>
</table>

Thus $|e_f(0) - e_f(1)| \leq 1$.

Case 2: Duplication of pendant vertex v_j by an edge $v'_jv''_j$.

Without loss of generality we assume that $v_j = v_n$. Then in G we have a cycle of length three having vertices v_n, v'_n and v''_n.

Now the resultant graph G will have $n + 3$ vertices and $n + 3$ edges.

We define $f : V(G) \rightarrow \{1, 2, 3, \ldots n + 2, n + 3\}$ as follows.

\[
\begin{align*}
 f(v_0) &= 1, \\
 f(v_n) &= 3, \\
 f(v'_n) &= 4, \\
 f(v''_n) &= 2, \\
 f(v_i) &= 4 + i; \quad 1 \leq i \leq n - 1.
\end{align*}
\]

The following table describes the results of edge labels obtained due to the above labeling pattern.

<table>
<thead>
<tr>
<th>Cases of n</th>
<th>Results for edge labels</th>
</tr>
</thead>
<tbody>
<tr>
<td>n is even</td>
<td>$e_f(0) = \frac{n+2}{2}, e_f(1) = \frac{n+4}{2}$</td>
</tr>
<tr>
<td>n is odd</td>
<td>$e_f(1) = \frac{n+3}{2} = e_f(0)$</td>
</tr>
</tbody>
</table>

Thus $|e_f(0) - e_f(1)| \leq 1$.

Hence, the graph obtained by duplication of vertex by edge in $K_{1,n}$ is sum divisor cordial. \(\square\)

Example 2.2. The star graph $K_{1,5}$ and sum divisor cordial labeling of the graph obtained by duplication of apex vertex v_0 by an edge $e = v'_0v''_0$ in $K_{1,5}$ are shown in Figure 2.

Example 2.3. The star graph $K_{1,7}$ and sum divisor cordial labeling of the graph obtained by duplication of vertex v_7 by an edge $e = v'_7v''_7$ in $K_{1,7}$ are shown in Figure 3.

Definition 2.4 ([4]). Duplication of an edge $e = uv$ by a new vertex v' in a graph G produces a new graph G' such that $N(v') = \{u, v\}$.

Theorem 2.4. The graph obtained by duplication of an edge by a vertex in $K_{1,n}$ is a sum divisor cordial graph.
Proof. Let v_0 be the apex vertex and v_1, v_2, \ldots, v_n be the consecutive pendant vertices of $K_{1,n}$.

Let G denote the graph obtained by duplication of the edge v_0v_1 by a vertex v'_1.

Now the resultant graph G will have $n + 2$ vertices and $n + 2$ edges.

We define $f : V(G) \to \{1, 2, \ldots, n + 2\}$ as follows.

\[
\begin{align*}
 f(v_0) &= 1. \\
 f(v_1) &= 2. \\
 f(v'_1) &= 4. \\
 f(v_i) &= 2i - 1. \quad 2 \leq i \leq 3 \\
 f(v_i) &= 2 + i; \quad 4 \leq i \leq n.
\end{align*}
\]

The following table describes the results of edge labels obtained due to the above labeling pattern.
Cases of \(n \)

<table>
<thead>
<tr>
<th>Cases of (n)</th>
<th>Results for edge labels</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n) is odd</td>
<td>(e_f(0) = \frac{n+1}{2}, e_f(1) = \frac{n+3}{2})</td>
</tr>
<tr>
<td>(n) is even</td>
<td>(e_f(1) = \frac{n+2}{2} = e_f(0))</td>
</tr>
</tbody>
</table>

Thus \(|e_f(0) - e_f(1)| \leq 1 \).

Hence, the graph obtained by duplication of edge by vertex in \(K_{1,n} \) is sum divisor cordial.

Example 2.4. The star graph \(K_{1,6} \) and sum divisor cordial labeling of the graph obtained by duplication of edge \(e = v_0v_1 \) by vertex \(v'_1 \) in \(K_{1,6} \) are shown in Figure 4.

![Figure 4](image_url)

3 Sum divisor cordial labeling for duplication of cycle \(C_n \) related graphs

Theorem 3.1. The graph obtained by duplication of an arbitrary vertex \(v_k \) in cycle \(C_n \) is a sum divisor cordial graph.

Proof. Let \(v_1, v_2, \ldots, v_n \) be the vertices of cycle \(C_n \). Without loss of generality we duplicate the vertex \(v_1 \) by the vertex \(v'_1 \). Now the resultant graph \(G \) will have \(n + 1 \) vertices and \(n + 2 \) edges. We define \(f : V(G) \to \{1, 2, 3, \ldots n + 1\} \) as follows.

For \(n \equiv 0, 1, 3(\text{mod}4) \):

\[
f(v'_1) = n + 1.
\]

\[
f(v_i) = \begin{cases}
 i & ; i \equiv 1, 0(\text{mod } 4) \\
 i + 1 & ; i \equiv 2(\text{mod } 4) \\
 i - 1 & ; i \equiv 3(\text{mod } 4); \quad 1 \leq i \leq n.
\end{cases}
\]
For \(n \equiv 2(\text{mod}4) \):

\[
f(v'_1) = n.
\]
\[
f(v_i) = \begin{cases}
 i & ; i \equiv 1,0(\text{mod} 4) \\
 i+1 & ; i \equiv 2(\text{mod} 4) \\
 i-1 & ; i \equiv 3(\text{mod} 4); \quad 1 \leq i \leq n.
\end{cases}
\]

Now \(2 \mid [f(u) + f(v)] \) where \(f(u) \) and \(f(v) \) both are of same parity.

From the above defined labeling, the vertex labels for two consecutive vertices in the graph are arranged in a pattern such that

1. \(f(v_{4t-3}), f(v_{4t-2}) \) are odd and \(f(v_{4t-1}), f(v_{4t}) \) are even or

2. \(f(v_{4t-3}), f(v_{4t-2}) \) are even and \(f(v_{4t-1}), f(v_{4t}) \) are odd and so on.

Hence \(f(v_{4t-3}v_{4t-2}) = 1, f(v_{4t-2}v_{4t-1}) = 0, f(v_{4t-1}v_{4t}) = 1, f(v_{4tv_{4t+1}}) = 0 \), where \(1 \leq t \leq \frac{|E|}{4} \).

The following table describes the results of edge labels obtained due to the above labeling pattern.

<table>
<thead>
<tr>
<th>Cases of (n)</th>
<th>Results for edge labels</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n) is odd</td>
<td>(e_f(1) = \frac{n+1}{2}, e_f(0) = \frac{n+3}{2})</td>
</tr>
<tr>
<td>(n) is even</td>
<td>(e_f(1) = \frac{n+2}{2} = e_f(0))</td>
</tr>
</tbody>
</table>

Thus \(|e_f(0) - e_f(1)| \leq 1 \).

Hence, the graph obtained by duplication of an arbitrary vertex in \(C_n \) is sum divisor cordial.

Example 3.1. The cycle graph \(C_5 \) and sum divisor cordial labeling of the graph obtained by duplication an arbitrary vertex \(v_1 \) by vertex \(v'_1 \) in \(C_5 \) are shown in Figure 5.

\[\text{Figure 5} \]
Theorem 3.2. The graph obtained by duplication of an arbitrary edge \(e_k \) in cycle \(C_n \) is a sum divisor cordial graph.

Proof. Let \(v_1, v_2, \ldots, v_n \) be the vertices of cycle \(C_n \) and \(e_1, e_2, \ldots, e_n \) be the edges of cycle \(C_n \). Without loss of generality we duplicate the edge \(e_1 = v_1v_2 \) thus added vertices are \(v'_1 \) and \(v'_2 \) such that \(N(v'_1) = \{v'_2, v_n\} \) and \(N(v'_2) = \{v'_1, v_3\} \). Now the resultant graph \(G \) will have \(n + 2 \) vertices and \(n + 3 \) edges.

We define \(f : V(G) \to \{1, 2, 3, \ldots n + 2\} \) as follows.

For \(n \equiv 0(\text{mod} 4) \):

\[
\begin{align*}
 f(v'_1) &= n + 1. \\
 f(v'_2) &= n + 2. \\
 f(v_i) &= \begin{cases}
 i & ; i \equiv 1, 0(\text{mod} 4) \\
 i + 1 & ; i \equiv 2(\text{mod} 4) \\
 i - 1 & ; i \equiv 3(\text{mod} 4); \ 1 \leq i \leq n.
\end{cases}
\end{align*}
\]

For \(n \equiv 2(\text{mod} 4) \):

\[
\begin{align*}
 f(v'_1) &= n. \\
 f(v'_2) &= n + 2. \\
 f(v_i) &= \begin{cases}
 i & ; i \equiv 1, 0(\text{mod} 4) \\
 i + 1 & ; i \equiv 2(\text{mod} 4) \\
 i - 1 & ; i \equiv 3(\text{mod} 4); \ 1 \leq i \leq n - 1.
\end{cases}
\end{align*}
\]

For \(n \equiv 1(\text{mod} 4) \):

\[
\begin{align*}
 f(v'_1) &= 1. \\
 f(v'_2) &= 3. \\
 f(v_i) &= \begin{cases}
 i + 1 & ; i \equiv 1(\text{mod} 4) \\
 i + 2 & ; i \equiv 2, 3(\text{mod} 4) \\
 i + 3 & ; i \equiv 0(\text{mod} 4); \ 1 \leq i \leq n - 2.
\end{cases}
\end{align*}
\]

\[
\begin{align*}
 f(v_{n-1}) &= n + 1. \\
 f(v_n) &= n + 2.
\end{align*}
\]
For \(n \equiv 3(\text{mod} 4) \):

\[
\begin{align*}
 f(v_1') &= 1, \\
 f(v_2') &= 3, \\
 f(v_i) &= \begin{cases}
 i + 1 & ; i \equiv 1(\text{mod} 4) \\
 i + 2 & ; i \equiv 2, 3(\text{mod} 4) \\
 i + 3 & ; i \equiv 0(\text{mod} 4); \quad 1 \leq i \leq n-2.
\end{cases} \\
 f(v_{n-1}) &= n + 2, \\
 f(v_n) &= n + 1.
\end{align*}
\]

The following table describes the results of edge labels obtained due to the above labeling pattern.

<table>
<thead>
<tr>
<th>Cases of (n)</th>
<th>Results for edge labels</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n) is even</td>
<td>(e_f(0) = \frac{n+2}{2}, e_f(1) = \frac{n+4}{2})</td>
</tr>
<tr>
<td>(n) is odd</td>
<td>(e_f(1) = \frac{n+3}{2} = e_f(0))</td>
</tr>
</tbody>
</table>

Thus \(|e_f(0) - e_f(1)| \leq 1 \).

Hence, the graph obtained by duplication of an arbitrary edge in \(C_n \) is sum divisor cordial. \(\Box \)

Example 3.2. The cycle graph \(C_6 \) and sum divisor cordial labeling of the graph obtained by duplication an arbitrary edge in \(C_6 \) are shown in Figure 6.

![Figure 6](image)

Theorem 3.3. The graph obtained by duplication of an arbitrary vertex by a new edge in cycle \(C_n \) is a sum divisor cordial graph, for \(n \equiv 0, 1, 2(\text{mod} 4) \).

Proof. Let \(v_1, v_2, \ldots, v_n \) be the vertices and \(e_1, e_2, \ldots, e_n \) be the edges of cycle \(C_n \). Without loss of generality we duplicate the vertex \(v_1 \) by an edge \(e' \) with end vertices as \(v_1' \) and \(v_2' \). The
resultant graph G will have $n + 2$ vertices and $n + 3$ edges.

We define $f : V(G) \to \{1, 2, 3, \ldots n + 2\}$ as follows.

$$f(v_i) = \begin{cases}
i & ; i \equiv 1, 0 \pmod{4}
 i + 1 & ; i \equiv 2 \pmod{4}
 i - 1 & ; i \equiv 3 \pmod{4}; 1 \leq i \leq n.
\end{cases}$$

For $n \equiv 0, 1 \pmod{4}$:

$$f(v'_1) = n + 1.$$
$$f(v'_2) = n + 2.$$

For $n \equiv 2 \pmod{4}$:

$$f(v'_1) = n.$$
$$f(v'_2) = n + 2.$$

The following table describes the results of edge labels obtained due to the above labeling pattern.

<table>
<thead>
<tr>
<th>Cases of n</th>
<th>Results for edge labels</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n \equiv 2 \pmod{4}$</td>
<td>$e_f(0) = \frac{n+2}{2}, e_f(1) = \frac{n+4}{2}$</td>
</tr>
<tr>
<td>$n \equiv 0 \pmod{4}$</td>
<td>$e_f(1) = \frac{n+2}{2}, e_f(0) = \frac{n+4}{2}$</td>
</tr>
<tr>
<td>$n \equiv 1 \pmod{4}$</td>
<td>$e_f(1) = \frac{n+3}{2} = e_f(0)$</td>
</tr>
</tbody>
</table>

Thus $|e_f(0) - e_f(1)| \leq 1$.

Hence, the graph obtained by duplication of an arbitrary vertex by a new edge in C_n is sum divisor cordial.

Example 3.3. The cycle graph C_5 and sum divisor cordial labeling of the graph obtained by duplication an arbitrary vertex v_1 by a new edge $v'_1v'_2$ in C_5 are shown in Figure 7.

Theorem 3.4. The graph obtained by duplication of all the vertices by new edge in cycle C_n is a sum divisor cordial graph.

Proof. Let v_1, v_2, \ldots, v_n be vertices and e_1, e_2, \ldots, e_n be edges of cycle C_n. Let the graph obtained by duplicating all the vertices by edges in cycle C_n is G. The resultant graph G will have $3n$ vertices and $4n$ edges.

We define $f : V(G) \to \{1, 2, 3, \ldots 3n\}$ as follows.
For $n \equiv 0, 1, 3 \,(\text{mod} 4)$:

$$f(v_i) = \begin{cases}
 i & ; i \equiv 1, 0 \,(\text{mod} \ 4) \\
 i + 1 & ; i \equiv 2 \,(\text{mod} \ 4) \\
 i - 1 & ; i \equiv 3 \,(\text{mod} \ 4); \ 1 \leq i \leq n.
\end{cases}$$

For $n \equiv 0 \,(\text{mod} 4)$:

$$f(v_i') = \begin{cases}
 2i - 1 + n & ; i \equiv 1, 3 \,(\text{mod} \ 4) \\
 2i - 2 + n & ; i \equiv 0, 2 \,(\text{mod} \ 4); \ 1 \leq i \leq \frac{n}{2}.
\end{cases}$$

$$f(v_i'') = f(v_i') + 2; \quad 1 \leq i \leq \frac{n}{2}$$

$$f(v_i') = n + 2i - 1; \quad \frac{n}{2} + 1 \leq i \leq n.$$

$$f(v_i'') = n + 2i; \quad \frac{n}{2} + 1 \leq i \leq n.$$

For $n \equiv 3 \,(\text{mod} 4)$:

$$f(v_i') = \begin{cases}
 2i - 1 + n & ; i \equiv 1, 3 \,(\text{mod} \ 4) \\
 2i - 2 + n & ; i \equiv 0, 2 \,(\text{mod} \ 4); \ 1 \leq i \leq \frac{n+1}{2}.
\end{cases}$$

$$f(v_i'') = f(v_i') + 2; \quad 1 \leq i \leq \frac{n+1}{2}.$$

$$f(v_i') = n + 2i - 1; \quad \frac{n+1}{2} + 1 \leq i \leq n.$$

$$f(v_i'') = n + 2i; \quad \frac{n+1}{2} + 1 \leq i \leq n.$$
For \(n \equiv 1(\text{mod} 4) \):

\[
\begin{align*}
 f(v'_i) &= \begin{cases}
 2i + n ; & i \equiv 1, 3(\text{mod} 4) \\
 2i - 3 + n ; & i \equiv 0, 2(\text{mod} 4); \quad 1 \leq i \leq \frac{n-1}{2}.
 \end{cases} \\
 f(u''_i) &= f(v'_i) + 2; \quad 1 \leq i \leq \frac{n-1}{2}.
\end{align*}
\]

\[
\begin{align*}
 f(v'_i) &= n + 2i - 1; \quad \frac{n-1}{2} + 1 \leq i \leq n. \\
 f(u''_i) &= n + 2i; \quad \frac{n-1}{2} + 1 \leq i \leq n.
\end{align*}
\]

For \(n \equiv 2(\text{mod} 4) \):

\[
\begin{align*}
 f(v_i) &= \begin{cases}
 i + 1 ; & i \equiv 1(\text{mod} 4) \\
 i + 2 ; & i \equiv 2(\text{mod} 4) \\
 i - 2 ; & i \equiv 3(\text{mod} 4) \\
 i - 1 ; & i \equiv 0(\text{mod} 4); \quad 1 \leq i \leq n - 1.
 \end{cases} \\
 f(v_n) &= n + 2.
\end{align*}
\]

\[
\begin{align*}
 f(v'_i) &= n - 1. \\
 f(u''_i) &= n + 1.
\end{align*}
\]

\[
\begin{align*}
 f(v'_i) &= \begin{cases}
 2i - 3 + n ; & i \equiv 1, 3(\text{mod} 4) \\
 2i + n ; & i \equiv 0, 2(\text{mod} 4); \quad 2 \leq i \leq \frac{n}{2}.
 \end{cases} \\
 f(u''_i) &= f(v'_i) + 2; \quad 2 \leq i \leq \frac{n}{2}.
\end{align*}
\]

\[
\begin{align*}
 f(v'_i) &= n + 2i - 1; \quad \frac{n}{2} + 1 \leq i \leq n. \\
 f(u''_i) &= n + 2i; \quad \frac{n}{2} + 1 \leq i \leq n.
\end{align*}
\]

In view of the above defined labeling pattern, we have \(e_f(1) = 2n = e_f(0) \).

Thus \(|e_f(0) - e_f(1)| \leq 1 \).

Hence, the graph obtained by duplication of all the vertices by new edge in cycle \(C_n \) is sum divisor cordial.

Example 3.4. The cycle graph \(C_5 \) and sum divisor cordial labeling of the graph obtained by duplication of all the vertices by new edge in cycle \(C_5 \) are shown in Figure 8.

Theorem 3.5. The graph obtained by duplication of an arbitrary edge by a new vertex in cycle \(C_n \) is a sum divisor cordial graph.

Proof. Let \(v_1, v_2, \ldots, v_n \) be the vertices and \(e_1, e_2, \ldots, e_n \) be the edges of cycle \(C_n \). Without loss of generality we duplicate the edge \(v_1v_n \) by vertex \(v' \). The resultant graph \(G \) will have \(n + 1 \)
vertices and $n + 2$ edges.

We define $f : V(G) \to \{1, 2, 3, \ldots n + 1\}$ as follows.

For $n \equiv 0, 1, 3(mod 4)$:

\[
f(v_i) = \begin{cases}
 i & ; i \equiv 1, 0 \pmod{4} \\
 i + 1 & ; i \equiv 2 \pmod{4} \\
 i - 1 & ; i \equiv 3 \pmod{4}; \quad 1 \leq i \leq n.
\end{cases}
\]

\[
f(v') = n + 1.
\]

For $n \equiv 2(mod 4)$:

\[
f(v_i) = \begin{cases}
 i & ; i \equiv 1, 0 \pmod{4} \\
 i + 1 & ; i \equiv 2 \pmod{4} \\
 i - 1 & ; i \equiv 3 \pmod{4}; \quad 1 \leq i \leq n - 1.
\end{cases}
\]

\[
f(v_n) = n + 1.
\]

\[
f(v') = n.
\]

The following table describes the results of edge labels obtained due to the above labeling pattern.

<table>
<thead>
<tr>
<th>Cases of n</th>
<th>Results for edge labels</th>
</tr>
</thead>
<tbody>
<tr>
<td>n is odd</td>
<td>$e_f(1) = \frac{n+1}{2}, e_f(0) = \frac{n+3}{2}$</td>
</tr>
<tr>
<td>n is even</td>
<td>$e_f(1) = \frac{n+2}{2} = e_f(0)$</td>
</tr>
</tbody>
</table>

Thus $|e_f(0) - e_f(1)| \leq 1$.

Hence, the graph obtained by duplication of an arbitrary edge by a new vertex in C_n is sum divisor cordial.
Example 3.5. The cycle graph C_7 and sum divisor cordial labeling of the graph obtained by duplication an arbitrary edge by a new vertex in C_7 are shown in Figure 9.

![Figure 9](image)

Remark 3.1. In the section 3, Cycle related Theorems, the proof for the values of $e_f(1)$ and $e_f(0)$ is same as given in Theorem 3.1.

4 Sum divisor cordial labeling for duplication of path P_n related graphs

Theorem 4.1. The graph obtained by duplication of an arbitrary vertex v_k in path P_n is a sum divisor cordial graph.

Proof. Let v_1, v_2, \ldots, v_n be the vertices of path P_n. Let v_k be the vertex duplicated by new vertex v'_k, $1 \leq k \leq n$. Then the resultant graph G will have $n + 1$ vertices and if $k = 1$ or $k = n$ then n edges, if $k \neq 1$ or $k \neq n$ then $n + 1$ edges.

We define $f : V(G) \rightarrow \{1, 2, 3, \ldots n + 1\}$ as follows.

$$f(v_i) = \begin{cases} i & ; i \equiv 1, 0 \text{ (mod 4)} \\ i + 1 & ; i \equiv 2 \text{ (mod 4)} \\ i - 1 & ; i \equiv 3 \text{ (mod 4)}; \ 1 \leq i \leq n. \end{cases}$$

For $n \equiv 0, 1, 3 \text{(mod 4)}$

$$f(v'_k) = n + 1.$$

For $n \equiv 2 \text{(mod 4)}$

$$f(v'_k) = n.$$

When either of pendant vertex is duplicated, the following table describes the results of edge labels obtained due to the above labeling pattern.
When a vertex other than pendant vertex is duplicated, the following table describes the results of edge labels obtained due to the above labeling pattern.

<table>
<thead>
<tr>
<th>Cases of n</th>
<th>Results for edge labels</th>
</tr>
</thead>
<tbody>
<tr>
<td>n is odd</td>
<td>$e_f(1) = \frac{n-1}{2}, e_f(0) = \frac{n+1}{2}$</td>
</tr>
<tr>
<td>n is even</td>
<td>$e_f(0) = \frac{n}{2}, e_f(1) = \frac{n+2}{2}$</td>
</tr>
</tbody>
</table>

Thus $|e_f(0) - e_f(1)| \leq 1$.
Hence, the graph obtained by duplication of an arbitrary vertex in P_n is sum divisor cordial.

Example 4.1. The path graph P_5 and sum divisor cordial labeling of the graph obtained by duplication an arbitrary vertex in P_5 are shown in Figure 10.

![Figure 10](image_url)

Theorem 4.2. The graph obtained by duplication of an arbitrary edge e_k in P_n is a sum divisor cordial graph.

Proof. Let $e_1, e_2, \ldots, e_{n-1}$ be the edges of path P_n.
Let the duplicated edge be $v_kv_{k+1}, 1 \leq k \leq n - 1$ and let v'_1 and v'_2 be newly added vertices such that

$$N(v'_1) = \begin{cases} \{v'_2\} & ; k = 1 \\ \{v'_2, v_{k-1}\} & ; k \neq 1. \end{cases}$$

$$N(v'_2) = \{v'_1, v_{k+2}\}.$$

Then the resultant graph G will have $n + 2$ vertices and if $k = 1$ then $n + 1$ edges, if $k \neq 1$ then $n + 2$ edges.
We define \(f : V(G) \rightarrow \{1, 2, 3, \ldots n + 2\} \) as follows.

\[
f(v_i) = \begin{cases}
i & ; i \equiv 1,0(\text{mod} 4) \\
i + 1 & ; i \equiv 2(\text{mod} 4) \\
i - 1 & ; i \equiv 3(\text{mod} 4); \ 1 \leq i \leq n.
\end{cases}
\]

For \(n \equiv 0,1,3(\text{mod} 4) \)

\[
f(v'_1) = n + 2.
\]
\[
f(v'_2) = n + 1.
\]

For \(n \equiv 2(\text{mod} 4) \)

\[
f(v'_1) = n + 1.
\]
\[
f(v'_2) = n + 2.
\]

When either of the pendant edge is duplicated, the following table describes the results of edge labels obtained due to the above labeling pattern.

<table>
<thead>
<tr>
<th>Cases of (n)</th>
<th>Results for edge labels</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n) is odd</td>
<td>(e_f(1) = \frac{n+1}{2} = e_f(0))</td>
</tr>
<tr>
<td>(n) is even</td>
<td>(e_f(1) = \frac{n}{2}, e_f(0) = \frac{n+2}{2})</td>
</tr>
</tbody>
</table>

When an edge other than a pendant edge is duplicated, the following table describes the results of edge labels obtained due to the above labeling pattern.

<table>
<thead>
<tr>
<th>Cases of (n)</th>
<th>Results for edge labels</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n) is odd</td>
<td>(e_f(1) = \frac{n+3}{2}, e_f(0) = \frac{n+1}{2})</td>
</tr>
<tr>
<td>(n) is even</td>
<td>(e_f(1) = \frac{n+2}{2} = e_f(0))</td>
</tr>
</tbody>
</table>

Thus \(|e_f(0) - e_f(1)| \leq 1\).

Hence, the graph obtained by duplication of an arbitrary edge in \(P_n \) is sum divisor cordial. \(\square \)

Example 4.2. The path graph \(P_5 \) and sum divisor cordial labeling of the graph obtained by duplication an arbitrary edge in \(P_5 \) are shown in Figure 11.

Theorem 4.3. The graph obtained by duplication of an arbitrary vertex by a new edge in path \(P_n \) is a sum divisor cordial graph.

Proof. Let \(v_1, v_2, \ldots, v_n \) be the vertices and \(e_1, e_2, \ldots e_{n-1} \) be the edges of path \(P_n \). Duplicate the vertex \(v_k \) by an edge \(e' \) with end vertices as \(v'_k \) and \(v''_k \). The resultant graph \(G \) will have
We define \(f : V(G) \to \{1, 2, 3, \ldots, n+2\} \) as follows.

\[
f(v_i) = \begin{cases}
i & ; i \equiv 1, 0 \pmod{4} \\
i + 1 & ; i \equiv 2 \pmod{4} \\
i - 1 & ; i \equiv 3 \pmod{4}; \quad 1 \leq i \leq n.
\end{cases}
\]

For \(n \equiv 0, 1, 3 \pmod{4} \)

\[
f(v_k') = n + 1.
f(v_k'') = n + 2.
\]

For \(n \equiv 2 \pmod{4} \)

\[
f(v_k') = n.
f(v_k'') = n + 2.
\]

The following table describes the results of edge labels obtained due to the above labeling pattern.

<table>
<thead>
<tr>
<th>Cases of (n)</th>
<th>Results for edge labels</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n) is even</td>
<td>(e_f(0) = \frac{n+2}{2} = e_f(1))</td>
</tr>
<tr>
<td>(n) is odd</td>
<td>(e_f(1) = \frac{n+1}{2}, e_f(0) = \frac{n+3}{2})</td>
</tr>
</tbody>
</table>

Thus \(|e_f(0) - e_f(1)| \leq 1 \).

Hence, the graph obtained by duplication of an arbitrary vertex in \(P_n \) is sum divisor cordial. \(\square \)

Example 4.3. The path graph \(P_5 \) and sum divisor cordial labeling of the graph obtained by duplication an arbitrary vertex by a new edge in \(P_5 \) are shown in Figure 12.

Theorem 4.4. The graph obtained by duplication of an arbitrary edge by a new vertex in path \(P_n \) is a sum divisor cordial graph.
Proof. Let \(v_1, v_2, \ldots, v_n \) be the vertices and \(e_1, e_2, \ldots, e_{n-1} \) be the edges of path \(P_n \). Duplicate the edge \(e = v_kv_{k+1} \) by a vertex \(v' \). The resultant graph \(G \) will have \(n + 1 \) vertices and \(n + 1 \) edges.

We define \(f : V(G) \rightarrow \{1, 2, 3, \ldots, n + 1\} \) as follows.

\[
f(v_i) = \begin{cases}
 i & ; i \equiv 1, 0 \pmod{4} \\
 i + 1 & ; i \equiv 2 \pmod{4} \\
 i - 1 & ; i \equiv 3 \pmod{4}; \quad 1 \leq i \leq n.
\end{cases}
\]

For \(n \equiv 0, 1, 3 \pmod{4} \)

\[
f(v') = n + 1.
\]

For \(n \equiv 2 \pmod{4} \)

\[
f(v') = n.
\]

The following table describes the results of edge labels obtained due to the above labeling pattern.

<table>
<thead>
<tr>
<th>Cases of (n)</th>
<th>Results for edge labels</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n) is odd</td>
<td>(e_f(0) = \frac{n+1}{2} = e_f(1))</td>
</tr>
<tr>
<td>(n) is even</td>
<td>(e_f(0) = \frac{n}{2}, e_f(1) = \frac{n+2}{2})</td>
</tr>
</tbody>
</table>

Thus \(|e_f(0) - e_f(1)| \leq 1 \).

Hence, the graph obtained by duplication of an arbitrary edge by a new vertex in \(P_n \) is sum divisor cordial.

\[\square\]

Example 4.4. The path graph \(P_5 \) and sum divisor cordial labeling of the graph obtained by duplication an arbitrary edge by a new vertex in \(P_5 \) are shown in Figure 13.

Theorem 4.5. The graph obtained by duplication of all the vertices by edges in path \(P_n \) is a sum divisor cordial graph.
Proof. Let v_1, v_2, \ldots, v_n be the vertices and $e_1, e_2, \ldots, e_{n-1}$ be the edges of path P_n.

Let G denote the graph obtained by duplicating all the vertices by edges in path P_n. The resultant graph G will have $3n$ vertices and $4n - 1$ edges. Let the edge so added corresponding to vertex v_i has end vertices as v_i' and v_i'', where $1 \leq i \leq n$.

We define $f : V(G) \rightarrow \{1, 2, 3, \ldots, 3n\}$ as follows.

For $n \equiv 0, 1, 3(\text{mod} 4)$:

$$f(v_i) = \begin{cases}
 i & ; i \equiv 1, 0(\text{mod} 4) \\
 i + 1 & ; i \equiv 2(\text{mod} 4) \\
 i - 1 & ; i \equiv 3(\text{mod} 4); \quad 1 \leq i \leq n.
\end{cases}$$

For $n \equiv 0(\text{mod} 4)$:

$$f(v_i') = \begin{cases}
 2i - 1 + n & ; i \equiv 1, 3(\text{mod} 4) \\
 2i - 2 + n & ; i \equiv 0, 2(\text{mod} 4); \quad 1 \leq i \leq \frac{n}{2}.
\end{cases}$$

$$f(v_i'') = f(v_i') + 2; \quad 1 \leq i \leq \frac{n}{2}.$$

$$f(v_i') = n + 2i - 1; \quad \frac{n}{2} + 1 \leq i \leq n.$$

$$f(v_i'') = n + 2i; \quad \frac{n}{2} + 1 \leq i \leq n.$$

For $n \equiv 3(\text{mod} 4)$:

$$f(v_i') = \begin{cases}
 2i - 1 + n & ; i \equiv 1, 3(\text{mod} 4) \\
 2i - 2 + n & ; i \equiv 0, 2(\text{mod} 4); \quad 1 \leq i \leq \frac{n+1}{2}.
\end{cases}$$

$$f(v_i'') = f(v_i') + 2; \quad 1 \leq i \leq \frac{n+1}{2}.$$

$$f(v_i') = n + 2i - 1; \quad \frac{n+1}{2} + 1 \leq i \leq n.$$

$$f(v_i'') = n + 2i; \quad \frac{n+1}{2} + 1 \leq i \leq n.$$
For \(n \equiv 1(\text{mod} 4) \):

\[
\begin{align*}
 f(v'_i) &= \begin{cases}
 2i + n & ; i \equiv 1, 3(\text{mod} 4) \\
 2i - 3 + n & ; i \equiv 0, 2(\text{mod} 4); \quad 1 \leq i \leq \frac{n-1}{2}.
 \end{cases} \\
 f(v''_i) &= f(v'_i) + 2; \quad 1 \leq i \leq \frac{n-1}{2}.
\end{align*}
\]

\[
\begin{align*}
 f(v'_i) &= n + 2i - 1; \quad \frac{n-1}{2} + 1 \leq i \leq n. \\
 f(v''_i) &= n + 2i; \quad \frac{n-1}{2} + 1 \leq i \leq n.
\end{align*}
\]

For \(n \equiv 2(\text{mod} 4) \):

\[
\begin{align*}
 f(v_i) &= \begin{cases}
 i + 1 & ; i \equiv 1(\text{mod} 4) \\
 i + 2 & ; i \equiv 2(\text{mod} 4) \\
 i - 2 & ; i \equiv 3(\text{mod} 4) \\
 i - 1 & ; i \equiv 0(\text{mod} 4); \quad 1 \leq i \leq n - 1.
 \end{cases} \\
 f(v_n) &= n + 2. \\
 f(v'_1) &= n - 1. \\
 f(v''_1) &= n + 1.
\end{align*}
\]

\[
\begin{align*}
 f(v'_i) &= \begin{cases}
 2i - 2 + n & ; i \equiv 1, 3(\text{mod} 4) \\
 2i - 1 + n & ; i \equiv 0, 2(\text{mod} 4); \quad 2 \leq i \leq \frac{n-1}{2}.
 \end{cases} \\
 f(v''_i) &= f(v'_i) + 2; \quad 2 \leq i \leq \frac{n-1}{2}.
\end{align*}
\]

\[
\begin{align*}
 f(v'_i) &= n + 2i - 1; \quad \frac{n-1}{2} + 1 \leq i \leq n. \\
 f(v''_i) &= n + 2i; \quad \frac{n-1}{2} + 1 \leq i \leq n.
\end{align*}
\]

The following table describes the results of edge labels obtained due to the above labeling pattern.

<table>
<thead>
<tr>
<th>Cases of (n)</th>
<th>Results for edge labels</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n \equiv 1, 2, 3(\text{mod} 4))</td>
<td>(e_f(1) = 2n - 1, e_f(0) = 2n)</td>
</tr>
<tr>
<td>(n \equiv 0(\text{mod} 4))</td>
<td>(e_f(0) = 2n - 1, e_f(1) = 2n)</td>
</tr>
</tbody>
</table>

Thus \(|e_f(0) - e_f(1)| \leq 1 \).

Hence, the graph obtained by duplication of an arbitrary edge by a new vertex in \(P_n \) is sum divisor cordial.

\[\square\]

Example 4.5. The path graph \(P_5 \) and sum divisor cordial labeling of the graph obtained by duplication of all the vertices by edges in \(P_5 \) are shown in Figure 14.
5 Concluding Remarks

Here, we have investigated some new results related to the graph operation duplication of graph for sum divisor cordial labeling technique. To explore some new sum divisor cordial graphs in the context of other graph operations is an open area of research.

References

